# 2800~4100 埃连续可调紫外激光器

杨香春 叶 霖 杨天龙

(中国科学院上海光机所)

提要: 报导了 Nd:YAG 脉冲激光器基波 (1.06 微米) 与它的四次谐波泵浦的参量放大器输出(0.42~0.7 微米连续可调)在 KDP 晶体中进行和频,产生 0.3~0.41 微米连续可调的紫外激光。 以及 Nd:YAG 脉冲激光器的二次谐波(0.53 微米)泵浦的若丹明 6G 染料激光在 ADP 晶体中倍频,产生 0.28~0.3 微米连续可调的紫外激光的实验结果。

## A continuously tunable UV laser in 2800 Å to 4100 Å range

Yang Xiangchun Ye Lin Yang Tianlong

(Shanghai Institute of Optics and Fine Mechanics, Academia Sinica)

**Abstract**: This paper presents the experimental results on the generation of continuously tunable UV laser radiation in the range of 2800 Å to 4100 Å. The laser output at  $0.3 \mu m \sim 0.41 \mu m$  is generated with frequency-summing of the fundamental wave (Nd:YAG laser,  $1.06 \mu m$ ) and the output radiation of OPA (continuously tunable from  $0.42 \mu m \sim 0.7 \mu m$ ) pumped by the fourth harmonic wave ( $0.26\mu m$ ) of Nd:YAG radiation at  $1.06\mu m$  in KDP crystal. Continuously tunable UV laser output at  $0.28 \mu m \sim 0.3 \mu m$  is generated by frequency doubling the output of Nd:YAG laser SHG ( $0.53 \mu m$ ) pumped rhodamine 6G dye laser pumped by the second harmonic of Nd:YAG laser in an ADP crystal.

高强度的紫外激光器,特别是可调谐紫 外激光的研究,引起了人们很大的兴趣。近 几年来,国外发展很迅速,已经取得不少进 展。

产生紫外可调谐激光手段很多,在近紫 外区,晶体的透过率和相位匹配是能够满足 的,对于 ADP 和 KDP 晶体,在室温以上实 现相位匹配能够得到波长大于 0.25 微米的 激光,用其他晶体如 LiCHOO·H<sub>2</sub>O<sup>(1)</sup>、KB<sub>5</sub><sup>(2)</sup> 和尿素<sup>(3)</sup>可向更短的波长扩展,使用 KB<sub>5</sub> 和 频得到最短波长 0.185 微米<sup>(4)</sup>。 直接用短波长的光源泵浦染料也是向紫 外扩展波段的研究内容之一,目前力求复盖 0.3~0.4微米的波段<sup>(53)</sup>。但由于闪烁体染料 寿命短、受激发射困难、在强紫外激光照射下 易分解,要复盖这样宽的波段需寻找很多种 染料,使用很不方便。目前最短波长的染料 是对联三苯,它发射的最短波长是0.31微 米<sup>(63)</sup>。因此用倍频,特别是和频的方法得到 此波段的复盖是很有利的。下面介绍我们的 实验结果。

收稿日期: 1980年6月16日。

### 一、利用和频产生紫外可调激光

若获得 0.3~0.41 微米的激光也可用染 料激光倍频的方法,这就要求基波调谐范围 是 0.6~0.82 微米,长波段荧光染料的性质 不太稳定,并且用 0.53 微米激光作泵浦源, 它离发射波长较远,不易得到强的转换,对倍 频不利。与剩余的基波(1.064 微米)和频只 要求调谐波长的变化范围 0.42~0.7 微米就 够了,此波段利用染料激光和参量放大器都 是容易得到的,为了避免更换多种染料的麻 烦,我们用参量放大的输出作为和频的信号 波,1.064 微米的激光作为泵浦波。选用一 块按 II 类相位匹配切割的 KDP 晶体,它与 x轴的夹角  $\phi=0^\circ$ ,与 z轴夹角  $\theta=59^\circ$ ,实 验光路图如图 1 所示。



图1 实验光路图

1—Nd:YAG 振荡放大系统; 2—KDP 倍频晶体;
3—分光镜; 4、7、13—色散棱镜; 5、14—45°, 1.06
微米全反镜片; 6—ADP 倍频晶体; 8—聚焦透镜;
9—ADP 参量放大晶体; 10—准直透镜; 11—分光镜; 12—KDP 和频晶体

来自 Nd: YAG 振荡放大系统的基波, 经 过 KDP 晶体倍频之后,由分光镜 3 把基波 与谐波分开。为避免谐波的干扰又加了一块 色散棱镜 4,基波经过三块反射镜之后,与参 量放大输出的激光同光路进入和频晶体 12。 由分光镜 3 分出的二次谐波到达 ADP 晶体, 再一次倍频,得到四次谐波,被色散棱镜 7 分 出后,经过透镜 8 聚焦到 ADP 参量放大的晶 体上,得到一对波长连续可调的信号波和闲 散波,再经过透镜 10 准直,与基波一起进入

. 2 .

和频晶体 12,最后有四种波长的激光被色散 棱镜 13 分开。

根据相位匹配条件,得到 I 类匹配的和 频近似公式

$$\sin^{2}\theta_{I} = \left\{ \left( \frac{n_{3}^{0}\omega_{3}}{n_{1}^{0}\omega_{1} + n_{2}^{0}\omega_{2}} \right)^{2} - 1 \right\} / \left\{ \left( \frac{n_{3}^{0}}{n_{3}^{0}} \right)^{2} - 1 \right\}$$
(1)

和II类和频的近似公式

$$\sin^{2}\theta_{II} = \frac{2(n_{3}^{0}\omega_{3} - n_{2}^{0}\omega_{2} - n_{1}^{0}\omega_{1})}{\left\{ \begin{bmatrix} \left( \frac{n_{3}^{0}}{n_{3}^{e}} \right)^{2} - 1 \end{bmatrix} n_{3}^{0}\omega_{3} \\ - \left[ \left( \frac{n_{1}^{0}}{n_{1}^{e}} \right)^{2} - 1 \right] n_{1}^{0}\omega_{1} \end{bmatrix}$$
(2)

根据公式计算结果列于表 1,实验结果 列于表 2。

表1 和频波长与晶体匹配角的关系

| λ <sub>1</sub><br>(微米) | λ <sub>2</sub><br>(微米) | λ <sub>3</sub><br>(微米) | θΠ                         | $\theta_s - \theta_i$ | θι                         |
|------------------------|------------------------|------------------------|----------------------------|-----------------------|----------------------------|
| 1.064                  | 0.4447                 | 0.3136                 | $\theta_s = 61^\circ 25'$  |                       | $\theta_s = 52^{\circ}11'$ |
|                        | 0.6689                 | 0.4107                 | $\theta_i = 53^\circ 37'$  | 7°48′                 | $\theta_i = 43°6'$         |
| 1                      | 0.4681                 | 0.3251                 | $\theta_s = 61^\circ 56'$  |                       | $\theta_s = 48°24'$        |
| 11                     | 0.6232                 | 0.3930                 | $\theta_i = 55^{\circ}43'$ | 6°13′                 | $\theta_i = 45^{\circ}$    |
| and the                | 0.5130                 | 0.3461                 | $\theta_s = 58°29'$        |                       | $\theta_s = 45^{\circ}45'$ |
|                        | 0.5559                 | 0.3651                 | $\theta_i = 56^\circ 27'$  | 2°2′                  | $\theta_i = 46^{\circ}41'$ |

表2 和频实验结果

| The second se | and the second sec | and the second se | A second second | the second second second second        |
|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|----------------------------------------|
| 参放晶体<br>温度 T<br>(°C)                                                                                            | 参放晶体<br>波长<br>(微米)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 紫外和<br>频波长<br>(微米)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 和频<br>谱宽<br>(Å) | 和频晶体角<br>变化范围<br>$\theta_s - \theta_i$ |
| 82                                                                                                              | $\lambda_s = 0.4447$<br>$\lambda_i = 0.6689$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.3136<br>0.4107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4.3<br>27.3     | 7°24′                                  |
| 67                                                                                                              | $\lambda_s = 0.4681$ $\lambda_i = 0.6232$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.3251<br>0.3930                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8.4<br>16.0     | 6°54′                                  |
| 53                                                                                                              | $\lambda_s = 0.5130$ $\lambda_i = 0.5559$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.3461<br>0.3651                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4.0<br>21.7     | 4°52′                                  |

参量放大器的输出波与温度的关系示于 图 2, 当晶体的温度超过简并点的温度时,就 产生两种不同波长的激光, 用 λ。表示信号波 波长, 用 λ<sub>i</sub> 表示闲散波波长。表 2 列出了不 同温度条件下, 参量放大器输出的一对波长 与 1.064 微米激光和频时晶体的角度, θ<sub>s</sub> 和 θ,分别为参量放大器的信号波和闲散波与基 波和频的相位匹配角,我们测量了每个温度 时 θ<sub>s</sub> 和 θ<sub>i</sub> 之差,最大的角度差为 7°24',与计 算的最大角度差 7°48' 基本一致。



图 2 参量放大器的温度调谐曲线

为考虑和频的转换效率,我们把它定义 作和频的功率与参加和频的两个波当中的较 弱一个波的功率之比。因和频技术常用于天 体中的红外微弱信号检测,它利用一个强的 泵浦源,会把红外信号全部转换成和频的接 收信号。当ω<sub>1</sub>的功率远大于ω<sub>2</sub>的功率时 有<sup>[7]</sup>

$$\varepsilon_{3}(z) = \left(\frac{\omega_{3}^{2}}{\omega_{2}^{2}} \cdot \frac{K_{2}}{K_{3}}\right)^{1/2} \varepsilon_{2}(0) \sin \frac{z}{L_{P}} \quad (3)$$

$$s_2(z) = \varepsilon_3(0) \cos rac{z}{L_P}$$
 (4)

式中 $\epsilon_2$ 和 $\epsilon_3$ 分别为信号波和和频波场的实数幅度; z是晶体的长度;  $L_p$ 为参量上转换的特征长度,

$$L_{P} = \left[\frac{4\pi d}{C^{2}} \left(\frac{\omega_{2}^{2} \omega_{3}^{2}}{K_{2} K_{3}}\right)^{1/2} \varepsilon_{1}\right]^{-1} \qquad (5)$$

式中  $\epsilon_1$  为泵浦场的实数幅度; d 是晶体的有效非线性系数。适当选择晶体长度是很重要的,从(3)式看出,当晶体长度等于  $\frac{\pi}{2} L_p$  时,将把全部的  $\omega_2$  功率转换成  $\omega_3$  功率。在实验中初步观察了这种现象,在 Nd: YAG 激光

器的基波 (1.064 微米) 与二次谐波(0.53 微 米)和频时,我们把1.06 微米、45°全反的介 质膜片插入光路中,1.06 微米激光透过很 少,很难观测,而通过和频晶体时,就会观察 到很强的0.35 微米的激光,此时0.53 微米 的泵浦光约10 兆瓦,和频晶体长度50 毫米, 晶体长度选择比较合适就有较高的转换效 率。然而参量放大的输出与1.06 微米的激光 和频时,由于泵浦激光较弱,晶体长度远小于 *L*<sub>P</sub>,转换效率较低,当改善条件时,将会提高 紫外光的输出。

从表2的实验数据看出,和频的谱宽较宽,并且不同的波长和频曾出现不同的谱宽, 这是因为参量放大输出的谱宽较宽(40~150 Å),和频晶体有一定的接收角和不同频率时 晶体色散也不相同所造成的。为得到窄谱宽 必须用两个窄带宽的光源进行和频。

## 二、利用染料激光倍频 产生可调谐激光

我们只对一种浓度的若丹明 6G 染料 做 了倍频实验。选用一块 I 类相位匹配的 ADP 晶体,  $\phi = 45^{\circ}$ ,  $\theta = 65^{\circ}$ , 在腔外进行倍频, 其 实验装置的方块图如图 3 所示。



染料激光器性能见[8],我们测量了倍频 效率,当基波功率为3兆瓦,谱宽15Å,射束发 散角3毫弧度时,得到约10%的转换效率。

还测量了不同温度时倍频波长与晶体匹 配角的关系,与理论计算作了比较,如图4所示。



与倍频波长λ的关系

从图 4 可见, 对此波段, 温度较低时, 可 认为  $\theta$  和  $\lambda$  成线性关系,  $d\theta/d\lambda \approx -0.09^{\circ}/$ Å。而  $d\theta/dT = f(\lambda, T)$ , 当 T 增加时,  $d\theta/dT$ dT 增加, 当  $\lambda$  增加时,  $d\theta/dT$  下降。在  $\lambda$  为 0.28~0.3 微米、T 为 26~58°C 时, 从实验 求得  $d\theta/dT$ 列于表 3。

综上所述,利用倍频、和频产生可调谐激 光还是比较容易实现的。对于和频而言,在 可调谐光源不易作得很强的条件下,只要泵 浦光足够强和适当选择晶体长度,就可实现 高效率的转换。在0.3~0.4 微米的波段,和 频晶体调谐角的变化是 7<sup>e</sup> 左右,用一块晶体 是可以实现的。而倍频晶体的角度变化在λ 为0.28~0.3 微米时为 20°左右,通过温度变 化可缩小角度的范围。基本上用一块晶体可

#### 表3 $d\theta/dT$ 在不同的 $\lambda$ 和 T时的实验值

|                | ΔT (°C)             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
|----------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| λ<br>(微米)      | 26~47               | 47~58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
|                | $d\theta/dT$ (0/°C) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| 0.3            | 0.076               | 0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
| 0.29           | 0.10                | 0.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
| 0.28           | 0.15                | 0.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
| and the second |                     | and the second s |  |  |  |  |

实现。用上述方法,在一台 YAG 激光器上 用两块晶体实现了 0.28~0.41 微米 连续 可 调的波段复盖。

#### 参考文献

- [1] F. B. Dunning; Opt. Commun., 1973, 7, 181.
- [2] K. Kato; Appl. Phys. Lett., 1977, 11, 583.
- [3] Jeam-Marc Halbout et al.; IEEE J. Quant. Electr., 1979, QE-15, No. 10, 1176.
- [4] R. E. Stickel; Appl. Opt., 1978, 7, 981.
- [5] S. E. Harris, D. M. Blom; Appl. Phys. Lett., 1974, 24, 229.
- [6] W. Zapka; Appl. Phys., 1979, 20, 283.
- [7] F. Zernike, J. E. Midwinter; Appl. Nonlinear Optics, 1973.
- [8] 叶 霖等; 《激光》, 1978, 5, No. 4, 10.